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1 Motivation: Dieudonné modules

Let k be a perfect field of characteristic p. Recall that classical Dieudonné theory gives us a classification of
p-divisible groups over k in terms of Dieudonné modules, which are finite free W (k)-modules M , equipped
with σ-linear F : M → M and σ−1-linear V : M → M such that FV = V F = p.

For a general ring R, σ−1 no longer makes sense on W (R). Thus we define a Dieudonné module over R
to be a tuple (M,F#, V #) where M is a finitely generated projective W (R)-module, F# : M (1) → M and
V # : M → M (1) are W (R)-linear with F# ◦ V # = p, V # ◦ F# = p.

When R is a perfect ring of characteristic p, it is indeed true that such data classifies p-divisible groups
over R, in exact analogy with classical Dieudonné theory. However when R is not perfect, this definition
“loses some information”; if F (x) is divisible by p then we can no longer uniquely specify a y such that
py = F (x). The problem is thus related to the presence of p-torsion in W (R). We would like to rigidify the
situation further.

One way to fix this apparent loss of information is to observe that in the perfect case, on the submodule
V (M) ⊂ M , we have that pV −1 = F ; it follows that V −1 : V (M) → M witnesses when F is divisible by p.
The idea of Displays is to keep track of V (M) and V −1 as part of the data. They were introduced by Zink
in [Z].

2 Displays

Let R be a ring in which p is nilpotent. Let W (R) denote the Witt vector ring of R, with Frobenius
σ and verschiebung v. Let IR ⊂ W (R) be the ideal of elements whose first (ghost) component is zero,
i.e. IR = v(W (R)) = ker(W (R) → R). If g : M → N is a σ-linear map of W (R)-modules, we will set
M (1) = W (R) ⊗σ,W (R) M and let g# : M (1) → M the associated W (R)-linear map, which is defined by

g#(s⊗m) = sg(m).

Definition 2.1. A display over R is a quadruple (P,Q, F, F1), where P is a finitely generated projective
W (R)-module, Q ⊂ P is a submodule, and F : P → P, F1 : Q → P are σ-linear maps satisfying

1. IRP ⊂ Q and P/Q is a direct summand of P/IRP ;

2. P is generated by im(F1);

3. F1(v(ξ)x) = ξF (x) for ξ ∈ W (R), x ∈ P .

A morphism of displays (P,Q, F, F1) → (P ′, Q′, F ′, F ′
1) is a morphism of W (R)-modules P → P ′ which

takes Q to Q′ and is compatible with the maps F, F1, F
′, F ′

1. In this way we get an additive category of
displays over R.

The height of a display is h = rkW (R) P , a locally constant function on SpecR. The dimension is
d = rkR(P/Q). There is a natural notion of base change of displays with respect to ring maps u : R → R′,
and in this way, displays of height h and dimension d yield a category fibered in groupoids Disph,d∞ over
p-nilpotent rings.

Remark 2.2. 1. Taking ξ = 1 ∈ W (R), the definition of display gives

F (x) = F1(v(1)x) for all x ∈ P.
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Thus F is uniquely determined by F1.

2. Additionally taking x ∈ Q and using that σv = p, we find

F (x) = pF1(x) for all x ∈ Q.

It follows that we may think of F1 as a “partially defined divided Frobenius”.

As explained above, one of the main motivations for introducing the notion of display was to obtain a
nice generalization of Dieudonné modules in the case of a non-perfect base. For a perfect base, displays
behave as expected:

Lemma 2.3 ([L2, Lemma 2.4]). If R is a perfect ring of characteristic p, then the category of displays over
R is equivalent to the category of Dieudonné modules over R.

Proof. Note first that since R is perfect, σ is an automorphism. Since σv = p, it follows that W (R) is
p-torsion free and IR = (p).

If (M,F, V ) is a Dieudonné module over R, this implies that V : M → M is injective, and thus we can
consider the natural σ-linear morphism V −1 : V (M) → M . Then (M,V (M), F, V −1) gives the data of a
display over R.

Conversely let (P,Q, F, F1) be a display over R. We will define a W (R)-linear map V # : P → P (1) which
is the linearization of the appropriate V . Since the image of F1 generates P , it suffices to specify the values
of V # on im(F1), and we set V #(F1(x)) = 1⊗x for x ∈ Q. (This does in fact exist, since we can write down
V # globally in terms of a normal decomposition of our display, see [L2, Lemma 2.3]).

This yields a tuple (P, F, V ). The checks that F# ◦ V # = p, V # ◦ F# = p essentially boil down to the
definitions and the facts that pF1 = F on Q and σ ◦ v = p on W (R).

Remark 2.4. As the proof shows, there is always a natural functor from displays to Dieudonne modules,
even for non-perfect rings. However, in the presence of p-torsion in W (R), this functor need not be fully
faithful. The kind of thing that can happen is we could have two displays (P,Q, F, F1), (P,Q, F, F ′

1) producing
the same Dieudonné module because pF1 = pF ′

1 but F1 ̸= F ′
1.

An important tool for studying displays is that of normal decompositions.

Definition 2.5. A normal decomposition of a display P over R is direct sum decomposition P = T ⊕ L
such that Q = IRT ⊕ L.

Any display has a normal decomposition. Indeed, since P/Q is a direct summand of P/IRP , it is a
finitely generated projective R-module. Since R = W (R)/IR and W (R) is IR-adically complete, we may
choose a finitely generated projective W (R)-module T with T/IRT = P/Q. Choose a surjection P → T (by
lifting P/IP → P/Q), and let L be the kernel, so that P = L ⊕ T . We have that Q = ker(P → P/Q) =
ker(P → T )⊕ ker(T → P/Q) = L⊕ IRT as desired.

The following lemma is the key which allows us to understand displays explicitly via matrices.

Lemma 2.6. The display P is determined by a normal decomposition together with F |T and F1|L. More-
over, the map F ⊕ F1 : T ⊕ L → P is an f -linear isomorphism.

Proof. By what was established above, we have F |L = pF1|L, so F1|L determines F |L. Similarly, ξF (t) =
F1(v(ξ)t) for all ξ ∈ W (R), so F |T determines F1|IRT . Thus the given data allow us to reconstruct F : P → P
and F1 : Q → P .

The linearization (F ⊕ F1)
# : (T ⊕ L)(1) → P is a map of projective W (R)-modules of the same rank,

so it suffices to show it is surjective. By hypothesis, P is generated by im(F1), i.e. by elements of the form
F1(v(ξ)t + l) with v(ξ) ∈ IR, t ∈ T, l ∈ L. But note that F1(v(ξ)t + l) = ξF (t) + F1(l), and thus F ⊕ F1 is
surjective, as desired.
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3 Describing Displays Via Matrices

We will explain, following Bueltel and Pappas [BP], how to think of displays as described by matrices. This
will allow us to describe the moduli stack of displays very explicitly. It will also make it easier to formulate
the notions of truncated displays (which are associated to truncated Barsotti-Tate groups).

Before doing so, we make a couple notational remarks.

1. We let GLh(W ) denote the functor R 7→ GLh(W (R)) on p-nilpotent rings R. It is represented by a
formally smooth affine group scheme over Zp, which follows from the existence of the Witt polynomials
for addition and multiplication.

2. We let GLh(Wn) denote the functor R 7→ GLh(Wn(R)) on Fp-algebras R. It is representable by an
affine group scheme over Fp; the natural truncation morphisms GLh(Wn) → GLh(Wn−1) are smooth
and GLh(Wn) is smooth as well.

3.1 Displays

Let R be a p-nilpotent ring, and let P = (P,Q, F, F1) be a display over R. Let P = T ⊕ L be a normal
decomposition. Let us view F ⊕ F1 as a map in blocks

F ⊕ F1 =

(
A B
C D

)
.

Here A : T (1) → T,B : L(1) → T,C : T (1) → L, and D : L(1) → L are linear maps.
Working Zariski-locally on R, we may assume that T and L are free of rank d and h − d, respectively.

Choosing a basis, write T = ⟨e1, . . . , ed⟩ and L = ⟨ed+1, . . . , eh⟩. By the lemma, P is determined by the
block matrix

F ⊕ F1 =

(
A B
C D

)
∈ GLh(W (R)),

where A has size d× d and D has size (h− d)× (h− d).
Using this data, a morphism of displays P → P ′ is given by an element H ∈ Mh(W (R)), but the

condition that it sends Q = IRT ⊕L ⊂ P to Q′ ⊂ P ′ means that H can be written as a block matrix of the
form (

X v(Y )
Z T

)
.

where v(Y ) means apply v entry-wise to Y . Furthermore, the manifestation of the compatibility of H with
F, F1, F

′, F ′
1 is given by the matrix equation(

A′ B′

C ′ D′

)(
σ(X) Y
pσ(Z) σ(T )

)
=

(
X v(Y )
Z T

)(
A B
C D

)
.

The applications of σ come from the fact that F, F1 are Frobenius-linear, while the factor of p in front comes
from the relation pF1 = F on L. The map H is an isomorphism if the associated matrix is invertible.

Let H(d,h−d)(R) denote the subgroup of GLh(W (R)) consisting of matrices of the form

(
X v(Y )
Z T

)
, and

let Φ(H) denote the matrix

(
σ(X) Y
pσ(Z) σ(T )

)
. Given A ∈ GLh(W (R)), we define the Φ-conjugation of A by

H to be H−1AΦ(H). The above analysis then gives

Proposition 3.1. The moduli stack Disph,d∞ of displays of height h and dimension d over Spf Zp is isomorphic
to the quotient stack [GLh(W )/H(d,h−d)] (where the action is Φ-conjugation).
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3.2 Truncated displays

The notion of truncated displays is defined by Lau [L1], in the spirit of Zink’s original definition of displays.
However, this definition is rather complicated: it consists of the data of two Wn(R)-modules P and Q
together with additional maps satisfying a bunch of properties. The advantage of the matrix approach to
displays defined above is that we may define truncated displays in a much easier fashion. This notion ends
up being equivalent to Lau’s original definition, as shown by Lau and Zink [LZ].

For truncated displays, we will work over Fp. This is because Frobenius will induce an honest endo-
morphism of Wn(R) (as opposed to a map Wn+1(R) → Wn(R)), so it still makes sense to talk about
Frobenius-linear maps.

Intuitively, we will define n-truncated displays of height h and dimension d to be as in the definition of
displays, except with Wn(R) in place of W (R) everywhere. However, there is one important caveat in this
definition. Namely, in the case of the full Witt vectors, v : W (R) → W (R) is injective, and thus the Y entry
of H is uniquely recoverable from v(Y ). However since v : Wn(R) → Wn(R) need not be injective anymore,
we cannot uniquely recover Y from v(Y ). We want to remember the data of Y , so the way to fix this is
by working with a subgroup BPh,d

n ⊂ GLh(Wn)×GLh(Wn) (notation for Bueltel-Pappas, due to Drinfeld)

which we define to be those pairs of block matrices (

(
σ(X) Y
pσ(Z) σ(T )

)
,

(
X v(Y )
Z T

)
); Φ-conjugation above

just becomes (g, h) ·X = h−1Xg, and we get

Definition 3.2 (Definition/Proposition). The moduli stack Disph,dn of n-truncated displays of height h and
dimension d is the quotient [GLh(Wn)/BPh,d

n ].

As a consequence of the above descriptions, we can deduce a few things about the stacks of displays and
truncated displays:

Corollary 3.3. Dispn is a smooth algebraic stack over Fp of dimension 0. The natural truncation morphisms
τn : Dispn+1 → Dispn are smooth and surjective.

As remarked above, n-truncated displays admit a vector bundle-type description as with usual displays,
however we don’t go into that here. Instead, we analyze the case of 1-truncated displays in more detail.

3.3 Example: 1-truncated displays and BT1 groups

We discuss explicit descriptions of the functor of points of Disph,d1 and BTh,d
1 on Fp-schemes which reveal

more about their relationship, following [D]. In particular we will find that points of BTh,d
1 “look like” the

de Rham cohomology of smooth proper schemes in positive characteristic, while points of Disph,d1 “forget
the Gauss-Manin connection” associated to de Rham cohomology.

When n = 1, we have that W1(R) = R and V = 0. View elements of GLh as block matrices corresponding
to (d, h− d) as above, and consider the following block subgroups:

M =

(
∗ 0
0 ∗

)
, P+ =

(
∗ ∗
0 ∗

)
, P− =

(
∗ 0
∗ ∗

)
The fact that V = p = 0 immediately imply

BPh,d
1 = {(g, h) ∈ P+ × P− : gM = σ(hM )},

where gM , hM are the images of g and h in M (i.e. forget all but the diagonal blocks). Thus we have a short
exact sequence

1 → BPh,d
1 → P+ × P− gM∗σ(hM )−1

→ M → 1.

To analyze the quotient stack Disph,d1 = [GLh /BPh,d
1 ] further, we use the following two general facts

about classifying stacks:

Page 4 of 7



1. If G → H is a morphism of group schemes over a scheme S, then [H/G] is an H-torsor on BG which
induces a morphism BG → BH and thus a cartesian square

[H/G] S

BG BH

2. If 1 → K → G → Q → 1 is an exact sequence of group schemes over a scheme S, then we have

BK = BG×BQ S.

Using these two facts, we find
[GLh /BPh,d

1 ] ∼= B(BPh,d
1 )×B(GLh) Fp

and
B(BPh,d

1 ) ∼= B(P+ × P−)×BM Fp.

Combining, we get

Proposition 3.4. A 1-truncated display of height h and dimension d over an Fp-scheme S consists of

1. a P±-torsor X± on S;

2. an isomorphism X+
M

∼= F ∗
S(X

−
M );

3. an isomorphism between the GLh-torsors corresponding to X+ and X−.

Let us understand these conditions a bit more concretely. Recall that GLh-torsors over a scheme S can
be identified with vector bundles on S, via X 7→ (X × Ah

S)/GLh. Since the subgroup P+ of GLh is the
stabilizer of a d-dimensional subspace, we find that P+-torsors over a scheme S can be identified with pairs
(E , E ′), where E is a vector bundle of rank h an E ′ is a subbundle of rank d. Similarly P−-torsors are pairs
(E , E ′) with E ′ a subbundle of rank h− d.

It follows that a P±-torsor X± together with an isomorphism of the corresponding GLh-bundles can
be thought of as a vector bundle on S, together with two short filtrations coming from P+ and P− which
are related via Frobenius. Thinking of the analogy with de Rham cohomology, a typical example of such a
situation occurs by looking at the de Rham cohomology of a smooth proper S-scheme, whose fibers are such
that the Hodge to de Rham spectral sequence degenerates. In this setting, the two filtrations will be the
Hodge and conjugate filtrations.

The de Rham cohomology of algebraic varieties also comes equipped with a flat connection ∇, the Gauss-
Manin connection.

Theorem 3.5 (Conjectured by Drinfeld [D], Proven by Lau (unpublished)). An object of BTh,d
1 over an

Fp-scheme S consists of the 3 pieces of data described above, and additionally a flat connection ∇ on X+

satisfying certain additional conditions (e.g. the Katz p-curvature condition).

Under these descriptions, the morphism BTh,d
1 → Disph,d1 is simply the map which forgets the connection.

4 From Barsotti-Tate Groups to Displays

4.1 The Display Functor ϕ∞ : BTh,d
∞ → Disph,d

∞ over Spf Zp

We sketch how to associate a display to a p-divisible group over a p-nilpotent ring R, following Lau [L1],
[L2, Construction 3.16]. The construction proceeds in two steps:

1. First, one uses crystalline Dieudonné theory to associate to a p-divisible group G/R an object called a
filtered F -V module over R. We will explain this step in a special case below.
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2. Then one shows that actually this filtered F -V module can be upgraded to a display over R. As with
the setting of Dieudonné modules, this is not so hard to do if W (R) has no p-torsion, but Lau [L1]
shows that this can always be done. His proof uses the Grothendieck theorem of the smoothness of
the truncation morphisms BTn+1 → BTn.

Definition 4.1. Let R be a p-nilpotent ring. A filtered F -V module over R is a quadruple (P,Q, F#, V #)
where P is a finitely generated projective W (R)-module with a filtration IRP ⊂ Q ⊂ P such that P/Q is
projective over R, and F# : P (1) → P, V # : P → P (1) are W (R)-linear maps composing to p.

Thus a filtered F -V module is just a Dieudonné module with a short filtration (which doesn’t interact
with F or V at all). We can use crystalline Dieudonné theory to construct a functor ΘR : {p-divisible
groups/R} → {filtered F -V -modules/R}. To avoid using general constructions involving the crystalline
Dieudonné functor, we will suppose that G = A[p∞], where A/R is an abelian scheme.

A key observation is that W (R) is a PD thickening of R and of R/p, and moreover if A0 denotes the
fiber of A over R/p, we have H1

cris(A/W (R)) = H1
cris(A0/W (R)). Let P = H1

cris(A/W (R)), a finite free
W (R)-module. Let Q0 ⊂ H1

dR(A/R) be the first step of the Hodge filtration, i.e. Q0 = H0(A,Ω1
A/R). Then

we may let Q ⊂ P be the unique lift of Q0 to a W (R)-submodule of P which contains IRP . Now we may

let F# and V # be induced from the natural maps F : A0 → A(1)
0 , V : A(1)

0 → A0, and in this way we obtain
our filtered F -V module.

Note that the tuple (P, F#, V #) really only depends on the restriction of G to R/p, while the submodule
Q really depends on G over all of R. This is analogous to the phenomenon where lifts of abelian varieties
to characteristic 0 determine filtrations on the crystalline cohomology (via the identification of crystalline
cohomology with de Rham cohomology of a lift).

In the general case, we do something similar, where we use properties of the crystalline Dieudonné functor
as a substitute for properties of de Rham cohomology of abelian schemes.

There is a natural functor ΥR : (Disp /R) → {filtered F -V modules over R}, given by ΥR(P,Q, F, F1) =
(P,Q, F#, V #), where F# is the linearization of F and V # is determined by V #(F1(x)) = 1⊗x for x ∈ Q. As
in the case of Dieudonné modules, we can go backwards when W (R) has no p-torsion. Using Grothendieck’s
smoothness theorem, Lau reduces to the p-torsion free case and shows that for each p-divisible group G/R
with associated filtered F -V module (P,Q, F#, V #), there is a unique map F1 : Q → P which is functorial
in G and R such that (P,Q, F, F1) is a display which induces V #. The point is that it suffices to construct
a display associated to a filtered F -V module in the universal case, and Grothendieck’s theorem allows us
to make sure that the universal case is such that there is no p-torsion.

4.2 The Truncated Display Functor ϕn : BT
h,d

n → Disph,d
n over Fp

For each Fp-algebra R, there is a functor from BTn(R) → Dispn(R) which is compatible with base change

in R and with the natural truncation functors on both sides, and thus a morphism BTh,d
n → Disph,dn of

algebraic stacks over Fp.
The rough idea for the construction of the above morphism is as follows. Assume that our n-truncated

Barsotti-Tate group G0/R can be written as the kernel of a morphism G → H of p-divisible groups over R.
Then the idea is to pass to the associated displays of G and H, truncate, and take the cokernel. One reduces
to this case using Grothendieck’s smoothness theorem; Grothendieck tells us that for G0 ∈ BTn(R), there
is a sequence of faithfully flat ring maps R = R0 → R1 → . . . such that G ⊗R lim−→Ri is the pn torsion of a
p-divisible group over R. For more details, we refer to [L1].

References

[BP] O. Bueltel and G. Pappas. (G,µ)-displays and Rapoport-Zink spaces. 2018.

https://arxiv.org/abs/1702.00291

[D] V. Drinfeld. On Shimurian Generalizations of the Stack BT1 ⊗Fp. arXiv prepreint.

https://arxiv.org/abs/2304.11709

Page 6 of 7

https://arxiv.org/abs/1702.00291
https://arxiv.org/abs/2304.11709


[L1] E. Lau. Smoothness of the Truncated Display Functor. 2013.

https://www.ams.org/journals/jams/2013-26-01/S0894-0347-2012-00744-9/S0894-0347-2012-00744-
9.pdf
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